
 

國立臺灣大學電機資訊學院資訊工程學研究所 

碩士論文 

Department of Computer Science and Information Engineering 

College of Electrical Engineering & Computer Science 

National Taiwan University 

Master Thesis 

 

 

室內及室外環境下之 GSM/Wi-Fi定位系統分析比較 

Performance Comparison between GSM and Wi-Fi  
Localization in both Indoor and Outdoor Environments 

 
 

連矩鋒  

Chu-feng Lien 

 

指導教授：朱浩華 博士 

Advisor: Hao-hua Chu, Ph.D. 

 

  中華民國 96年 1月 

January, 2007 

 



 

i 



 

ii 

Acknowledgements 

I am grateful to CSIE Department for giving me this chance to learn a variety of disci-

plines in computer science. I would also like to thank my advisor Prof. Hao-hua Chu for 

his instruction and comments on completing this thesis. In addition, I appreciate my lab 

mate LiShan for her help on prototyping the localization systems in the beginning of 

this work. 

My wife Sharon, my sweet daughter Mei, and my family members gave me spiritual 

support while I was pursuing my degree. I love you so much. 



 

iii 



 

iv 

中文摘要 

定位系統已被廣泛地應用在各種服務，一旦系統得知人以及物件的位置，服務的

種類將可變地更為個性化，這些與位置相關的服務包括導航、地域性的廣告、後

勤服務、庫存管控、以及博物館導覽等等，而用來啟動及推廣這類服務的，會是

一套可於任何時刻在室內及室外環境下精準定位人及物件的系統。  

為了實際地評估建立一個能廣泛覆蓋室內和室外環境的定位系統的可行性，我們

選擇目前相當普及的 GSM 和 Wi-Fi 兩個無線網路，將利用這兩個無線網路所構成

的定位系統放置到 Smart phone 和 PDA phone 上實現，並且在室內及室外環境﹝例

如：辦公室、都市、校園和郊區﹞根據不同演算法﹝Centroid、Weighted 

Centroid、及 Fingerprinting﹞比較它們的定位表現。結果顯示基于 GSM 的定位系

統的平均定位誤差在室內﹝室外﹞的環境下是11﹝113﹞公尺，基于 Wi-Fi 的定位

系統在室內(室外)環境下的平均定位誤差為5﹝29﹞公尺，我們認為以這樣的精準

度來建構一個可適用於室內及室外的定位系統是可行的。在實驗的過程中，我們

討論遇到的幾個實際問題並且比較每種定位方法的優缺點。 在文章的最後，我們

提出結合GSM及Wi-Fi兩種網路的混合式定位系統。 

關鍵詞：GSM定位、Wi-Fi 定位、室內室外定位、定位系統比較分析、混合式定

位系統 
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Abstract 

Location is considered as one of most widely utilized context information in context-

aware computing. Location-aware services leverage the location of people and objects 

to provide relevant or personalized information and services to users. An enabling tech-

nology is a ubiquitous (pervasive) location system that can accurately track positions of 

people and objects anytime anywhere in both indoor and outdoor environments. Exam-

ples of these location-aware services include navigation services, location-based 

advertisement services, logistical services, inventory control services, museum guide 

services, etc. 

To evaluate feasibility of constructing a practical localization system, which can have 

wide coverage in both the indoor and outdoor environments, we have selected GSM and 

Wi-Fi based localization systems, implemented them on commercial GSM/Wi-Fi smart 

phones and PDAs, and compared their performance under different positioning algo-

rithms (e.g., centroid, weighted centroid, and fingerprinting) and different 

indoor/outdoor environments (e.g., offices, urban and rural areas).  Results have shown 

that the average positional accuracy of a GSM based localization in indoor(outdoor) en-

vironment is 11(113) meters, and the average positional accuracy of a Wi-Fi based 

localization system in indoor(outdoor) environment is 5(29) meters. We consider the 

accuracy feasible and sufficient for an indoor/outdoor localization system. From our 

deployment experiences, we discuss several practical problems encountered and com-

pare the pros and cons of each localization method. Finally, we propose a GSM/Wi-Fi 

hybrid localization system that combines the advantages of both GSM/Wi-Fi localiza-

tion systems. 
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Chapter 1  
Introduction 

1.1 Location System 

Location system is one of the key technology building blocks for ubiquitous computing 

systems and applications. The “where” context, i.e., person/object's location, has 

been shown to be one of the most widely-used and easily-accessible context in making 

smart objects and smart environments for the research of ubiquitous computing or con-

text-aware computing [1, 2]. Examples of these applications at home include home 

automation, home security systems, elders’ activity recognition, object tracker, etc. 

From the system point of view, positioning technologies can be classified into network 

based and mobile station based localization. Network based localization takes advan-

tage of network deployment and it obtains an object’s position by coordinating its 

network facilities or via its synchronous signals. Since the estimation of an object’s lo-

cation is processed in the core networks, more complex algorithms can be applied to the 

system and the design of a mobile device can be made as simple and power efficient as 

possible. However, the network based method may locate a user with or without his/her 

awareness and consent, it has a danger of potentially infringing on a user’s privacy. 

Mobile station based localization uses mobile devices’ processing capability to calcu-

late its own position by observing and analyzing ambient radio beacons. In the mobile 

based location, a mobile device needs to a sufficient storage capacity of a positioning 

database and a processing capacity to compute its position in or near real time. There-

fore, this raises the issues of computing resource and battery life on mobile devices. 
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The current most popular location system is the GPS system. The GPS system requires 

using a GPS receiver that has a clear line-of-sight to GPS satellites flying over the sky. 

This means that GPS system (without any additional infrastructure supporting indoor 

operations) is limited to the outdoor environments. Studies have shown that average 

people nowadays spend more than 90% of their times in the indoor environments. This 

significantly reduces the availability of the outdoor GPS system, and raises a demand 

for indoor location systems. In the past few years, we have seen a large number of re-

search developments in indoor location systems that tries a variety of methods [3], such 

as matching fingerprints of Wi-Fi, GSM, and Zigbee radio signal strength [6, 13-15, 22-

28,], calculating distance from ultrasonic or infrared signal’s time-of-flight [4, 5, 32], 

vision tracking from multiple cameras[9, 10], active/passive RFID signaling the nearest 

known-location positioning nodes [18, 29-31], detecting phase difference in ultra wide-

band (UWB) pulse signals [17], location-sensing floors [12], and many others. 

However, we have seen very limited number of successful examples of localization sys-

tem to operate in both indoor and outdoor environments. Why is that? Based on our 

experiences, we have identified three practical deployment barriers that have not been 

successfully overcome “as a whole”by existing location systems: positional accuracy, 

infrastructural coverage, and infrastructural stability. Positional accuracy is about reduc-

ing error in pinpointing the spatial position of a target. Infrastructural coverage is about 

the availability of reference signals in the environment that can be used by the localiza-

tion systems. This has to do with the cost of infrastructural deployment that can scale up 

to wide indoor and outdoor environments. Infrastructural stability is about the maintain-

ability and stability of the infrastructural components. An unstable infrastructure would 

affect the accuracy and increase the cost of calibration. A practical localization system 

should ideally provide good positional accuracy (therefore can satisfy the accuracy re-
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quirements of many applications), wide indoor and outdoor coverage, (therefore can 

provide a good accuracy), and good infrastructural stability (therefore can reduce the 

cost of calibration). More importantly, it should be able to work in both indoor and out-

door environments. 

1.2 GSM and Wi-Fi 

GPS is considered one of the most well known location technologies. GSM or emerging 

3G (UMTS/CDMA2000) networks are also important because of their pervasive cover-

age in both indoor and outdoor environment. In recent years, Wi-Fi network has also 

become almost in-par with cellular network, in popularity and coverage in dense urban 

areas, as the need for high-speed wireless communication increases and attractive cost. 

Since GPS has a roof limitation and we are in the indoor environments more than 90% 

of time, we are evaluating alternative radio mediums that can operate both indoor and 

outdoor in NLOS (non line of sight) mode. Two kinds of radio signals are considered in 

this thesis work, GSM and Wi-Fi, due to their ubiquitous coverage in modern lives. The 

GSM (Global System for Mobile Communications) is the most popular standard for 

mobile phones in the world. Its service is currently used by over 2 billion people across 

more than 212 countries and territories. The ubiquity and pervasive existence of the 

GSM standard makes international roaming very common between mobile phone opera-

tors, enabling subscribers to use their phones in many parts of the world.  Wi-Fi shares 

many similar characteristics as GSM. Wi-Fi is a brand to describe the underlying tech-

nology of wireless local area networks (WLAN) based on the IEEE 802.11 

specifications. Originally, it was designed to be used for mobile computing devices to 

constitute LANs, but is now increasingly used for broad digital services, including 

Internet and data access, online gaming and connectivity of consumer electronics or in-
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telligent appliances. Recently, the standard of WiMAX (IEEE 802.16) has been mature, 

and it is likely to be the candidate solution of “last mile” wireless broadband access. 

Due to the regulations of radio spectrum and the rare infrastructural availability, com-

pared with Wi-Fi, WiMAX is not as popular as Wi-Fi nowadays. But it is likely to be 

pervasive given its broader bandwidth and wider coverage in design.  

In Taipei, the City’s wireless network has named the largest and densest Wi-Fi network 

in the world [36]. That means we can gain access to Wi-Fi signals in almost all indoor 

and outdoor spaces in Taipei City; therefore, it has become an attractive testbed for de-

ploying Wi-Fi localization system.  

In our work, we practically deploy our localization systems on commercial GSM-Wi-Fi 

hybrid smart phones and compare the performance between GSM and Wi-Fi systems. 

We have implemented different positioning algorithms including Basic Centroid, 

Weighted Centroid, and Fingerprinting, and conducted real experiments to evaluate and 

compare their performance.  

From our experimental results, using the same positioning algorithm, Wi-Fi based loca-

tion systems can achieve almost one order of magnitude better positional accuracy and 

precision than GSM based location systems. In addition, we recommend the Centroid 

algorithm in the outdoor environment, because of its low training cost and relatively 

low computing power. Note that since outdoor environments usually cover large areas, 

we have to collect lots of data before the tracking phase can take place. Due to limited 

CPU and storage resources on a mobile device, it is necessary to adopt a light-weight 

algorithm for training and tracking. The Fingerprinting algorithm is recommended in 

the indoor environment because indoor applications tend to require more positional ac-

curacy and precision. Better accuracy can be achieved by a deliberately and densely 

trained Fingerprinting system. These are our recommendations given today’s technolo-
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gies. However, in the future, a mobile device may have much more computing and stor-

age capabilities that our recommendations may not apply. 

   

 

1.3 Research Claim 

This is a feasibility study of localization systems that utilize ubiquitous GSM and Wi-Fi 

radio signals to provide wide area coverage and both in the indoor and outdoor envi-

ronments. To claim their feasibility, we have prototyped working localization systems 

on GSM/Wi-Fi hybrid mobile devices and conducted experiments to measure their per-

formance in positional accuracy. Our experimental results show that Wi-Fi(GSM) 

localization systems can achieve an average positional accuracy in the range of 11(113) 

meters in the outdoor environment and 5(29) meters in the indoor environments. We 

believe that the positional accuracy is sufficient to enable some indoor/outdoor location-

aware services.  

1.4 Thesis Organization 

The remainder of this thesis is organized as follows. Chapter 2 describes related work. 

Chapter 3 presents different positioning algorithms including centroid, weighted cen-

troid, and fingerprinting. Chapter 4 provides details of our implementation of these 

Fig. 1.  Outdoor activities 
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positioning algorithms using GSM-Wi-Fi hybrid smart mobile devices. Chapter 5 dis-

cusses our experimental results. Chapter 6 proposes a hybrid method that combines both 

GSM and Wi-Fi localization, followed by conclusions and future works in Chapter 7. 
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Chapter 2  
Related Work 
There is a large amount of related work literature on localization systems. We can group 

these systems under four general categories: (1) radio signal strength (RSS) based sys-

tems, (2) acoustic based systems, (3) infrared based systems, and (4) RFID based 

systems. We will discuss them in details and point out their limitations. 

The first category is based on using radio signal strength (RSS). RSS based methods 

can be applied on different radio technologies. In general RSS based systems are based 

on the fingerprinting algorithm, which is consisted of two general phases. The first 

phase is called calibration phase, in which a radio map is manually constructed by mov-

ing about different location points in the deployed environment and recording their 

radio signal strength in the radio map. The second phase is positioning phase, in which 

RSS values from mobile devices are compared to the recorded values on the radio map 

to infer the devices’ current positions. Given the ubiquity of Wi-Fi access points in city 

and suburb areas, the most popular RSS method is using Wi-Fi signals. These Wi-Fi 

systems can be categorized into two broad approaches. The first approach is based on 

the deterministic method [6, 22]. Systems following this approach apply deterministic 

inference, such as triangulation and k-nearest-neighbors (KNN) search, to estimate the 

target device's location. For example, the RADAR system [6] applies KNN to obtain the 

k nearest neighbors, where a neighbor is a sampled point on the radio map, and nearness 

is denoted as closeness between the target device's RSSI values and the RSSI of any 

sampled points on the radio map. To estimate the location of the target device, the de-

terministic approach can be used to average the locations from the k nearest neighbors. 
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The second approach is based on the probabilistic method [23, 24, 25, 26]. For example, 

Seshadri et al. [26] applied Bayesian's inference, which uses multiple probabilistic 

models and histograms to enhance the performance of the original system, by calculat-

ing the conditional probabilities over locations based RSSI. They added a motion model 

to describe the continuity in human's movements such that it can lower the oscillatory 

location estimations in Wi-Fi based localization systems. One of the most successful 

commercial Wi-Fi localization system Ekahau [22], claims that it can achieve positional 

accuracy to 2~3 meters. Since we have also purchased and deployed the Ekahau system, 

our testing shows that such 2~3 meters average accuracy is only attainable for station-

ary objects in ideal environments, but not applicable to moving objects and general 

indoor environments.  

Several research teams have tried using GSM radio fingerprinting [13, 27, 28] for in-

door & outdoor localization. These research projects are similar to our work. Their 

reported positional accuracy numbers varies: the University of Toronto team [13] re-

ported indoor positional accuracy of 5 meters in large multi-floor buildings. However, 

we have performed similar experiments using GSM signals in our department buildings, 

and our accuracy results are doubled (in tens of meters) than their reported results. 

Though the method to use channelID, suggested in their work, can provide a higher ac-

curacy, it is not practical when deploying such systems at a large scale because of 

channel reuse in GSM networks and when the training and tracking are performed with 

different operator networks. Intel Research Seattle [27, 28] has also tested outdoor lo-

calization using GSM signals in Seattle, and their reported accuracy numbers are within 

one hundred meters, which are more inline with our testing. Our work has also con-

ducted a similar feasibility and performance study using GSM/Wi-Fi radio signals in 

Taipei city, with a different Wi-Fi AP and GSM BS density.   
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Radio fingerprinting using Zigbee radios, due to its low power consumption, has also 

gained recent popularity recently. [14] uses Zigbee radio fingerprinting to leverage the 

lower power consumption of Zigbee radios. In comparison to Wi-Fi radio fingerprint-

ing, the Zigbee radio fingerprinting can achieve much more stable location (i.e., with a 

much smaller variance); however, this comes with a high density of Zigbee sensor 

nodes in the environment. In addition, Zigbee is not as popular as Wi-Fi that the radio 

source is not commonly available. The positional accuracy is also highly affected by the 

changing conditions in the deployment environments (e.g., changing humidity level, 

presence of people, open and closed doors, etc.) [15], as well as the mobility level of 

tracked targets. Finally, RSS based systems require extensive manual calibration efforts 

to construct accurate radio maps. 

The second category is using acoustic (ultrasonic) sensors, such as Active Bat [4] from 

AT&T research lab, Cricket from MIT [5], Dolphin from University of Tokyo [32], and 

many others. These systems are based on ultrasonic signal time-of-flight measurement 

to estimate distances to certain fixed positions in the environment and to apply the tri-

angulation method to compute spatial coordinates. For example, Active Bat system [4] 

requires installing ultrasonic receivers in the environment and an ultrasonic transmitter 

on a mobile bat unit worn by each user. The Cricket system [5] reverses this setting by 

having ultrasonic receiver on the mobile user and the transmitters in the environment. 

This better protects the location privacy of the person. Synchronization among transmit-

ters and receivers is done through radio signals, which travel much faster than ultrasonic 

signals. Although these ultrasonic systems can achieve good positional accuracy (in 

centimeter range), they have several known limitations, such as light of sight between 

beacon and receiver nodes, directionality of ultrasonic sensors, and limited range of ul-
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trasonic signals. These limitations confine ultrasonic systems to narrow application do-

mains. 

The third category is based on infrared sensors, such as the Active Badge [8] system 

from Olivetti lab. Given that infrared travels at the speed of light, the Active Badge sys-

tem requires a high precision synchronization protocol running over a dedicated 

wireline network infrastructure connecting all the infrastructure nodes. This wireline 

synchronization network hardware adds to the cost of its location systems and limits its 

scalability to a large area. Although these infrared systems can achieve centimeter posi-

tional accuracy, infrared signals are limited in relatively short range and severely 

affected by the presence of sunlight. 

Given the readily availability and cost effectiveness of RFID technology, several recent 

studies [18, 29, 30, 31] have proposed using RFID to track locations. In general, these 

systems work based on proximity of RFID tags signaling the nearest RFID positioning 

node or RFID readers. Therefore, the locations of the RFID tags are the room locations 

of their nearby positioning nodes. The advantage of the RFID based systems are low (or 

no) energy consumption on the mobile badges. Unless a high density of these RFID 

sensors are deployed in the environment, these systems can achieve room-based accu-

racy in room-based environments; therefore, they are not suitable for open-space 

environments. Willis et al. [18] attached passive RFID tags with known locations to the 

carpet pads, and RFID readers in the shoes to read locations of these passive RFID tags. 

To reduce the manual efforts of deploying tags, Haehnel et al. [29] used a robot to ex-

plore and localize the RFID tags in the space. The LANDMARC system [30] placed 

active RFID tags on the objects and RFID readers in the environment to track the tags. 

The GETA Sandals [31] are a footprint-based location system that tracks user locations 

by embedding ultrasonic sensors and RFID readers inside the sandals. 
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Our work in this thesis aims to evaluate the feasibility of localization systems to fit in 

both indoor and outdoor environment. It is mostly based on RSS method. We collect 

RSSI in both Fingerprinting and Weighted Centroid localizations. In basic Centroid al-

gorithm, we collect beacon addresses and estimate the location of a mobile device by 

calculating the arithmetic mean from all available beacons. All of the three localization 

algorithms are run on commercial cellular phones. We then compare GSM and Wi-Fi 

performance in both indoor and outdoor environments in several metrics and discuss the 

feasibility of these localization systems. 
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Chapter 3  
Positioning Algorithms 
Three kinds of positioning algorithms are adopted to compare the GSM/Wi-Fi localiza-

tion systems in this work. They are (1) Centroid, (2) Weighted Centroid, and (3) 

Fingerprinting. We will describe these positioning algorithms in the following subsec-

tions. 

3.1 Centroid Algorithm 

Centroid localization [7] method assumes that the location of each beacon is a prior 

knowledge of the system. It involves two phases – the training phase and the tracking 

phase. In the training phase, the system collects all beacon coordinates and stores them 

in a database that will be used later during the tracking stage. The training phase in-

volves walking or driving around the target area, and scanning all available beacons 

while recording their GPS coordinate at the same time. A beacon location is determined 

by calculating the arithmetic mean of all scans in which this beacon was detected. After 

the training phase, we generate a radio beacon list, comprising beacon ID and its GPS 

coordinate. 

During the tracking phase, the mobile device detects all available beacons, finds the 

corresponding beacons’ coordinates on a radio map, and then calculates the arithmetic 

mean of those beacons coordinates as its positional estimation. Figure 2 gives an exam-

ple for Centroid algorithm. Assuming a person stands in location (A’,B’) and the device 

observes 6 beacons ((A1,B2), (A2,B2), ..., (A6,B6)) nearby, the Centroid algorithm will 
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add all the available X axes and Y axes and divide it by 6, which is the number of ob-

served beacons.  

  

 

 

2.2 Weighted Centroid Algorithm 

The Weighted Centroid algorithm is an extension of the basic Centroid algorithm. As its 

name implies, a weight is added to each beacon according to this beacon’s perceived 

signal strength. Since the Weighted Centroid relies on the relative RSSI of each beacon, 

it is not suitable to mix different radio sources in this method. For example: -70dbm in 

GSM may have a different weight than -70dbm in Wi-Fi. Based on our experiences, 

Weighted Centroid can provide a better positional accuracy in general while only 

slightly increasing the computational load.  

Both Centroid and Weighted Centroid algorithms do not need to model the radio propa-

gation. Furthermore, if the telecom operators who have the beacons coordinates in their 

network plan are willing to share such information, we can reduce a great effort in the 

Fig. 2.  Centroid Positioning (the coordinate of beacons is a prior 
knowledge) 
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training stage to find the beacons’ coordinates. Since Centroid and Weighted Centroid 

adopt simple arithmetic calculation, they require less computing power in comparison 

with the Fingerprinting method. Note that in addition to positional accuracy, power con-

sumption is also considered as a critical factor for a mobile device.  

Figure 3 gives an example for Weighted Centroid algorithm. Similar to the Centroid 

algorithm, the location (A’,B’) is obtained by introducing a weighted parameter during 

mathematical operation. 

  

 

2.3 Fingerprinting 

Fingerprinting is a method to collect radio fingerprints in a specific area and constitute a 

radio map as the training result. In tracking stage, it compares current RSSI fingerprints 

with the radio map, and finds the best matched location as its estimation.  

In our experiments, we construct a fingerprint database with grid size of 10x10 meters 

in the outdoor environments and 2x2 meters in the indoor environments. Fingerprinting 

Fig. 3.  Weighted Centroid Positioning 
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method may require more storage space because it has to collect as many radio finger-

prints as possible for better accuracy. For an area like Hsin-Yi District in Taipei, the 

size of database is more than 4Mbytes. Since the system need to search each grid on the 

radio map to find best matches, the response time of the mobile device would go down 

as the size of database increases.  

There are two ways to collect RSSI (Radio Signal Strength Indication) fingerprints in 

our training stage. One of both, like RADAR [6], plans several grids in a specific area; 

collect an amount of radio fingerprints in a static point, and save the arithmetic mean of 

perceived data to that grid. The database of radio map is formed after finishing all the 

training works. The other way does not pre-define a fixed grid size, but leave it to nor-

mal walking or driving speed. It records every scan of observed RSSI fingerprints as a 

single grid and combines all the grids as a radio map. Thus, people can drive or walk 

along the road or hallway without staying in a static point for a certain amount of time 

for Fingerprinting training. The second method is quite efficient when the radio source 

is stable, but offers a relatively low accuracy. Furthermore, it will result in a larger size 

of radio map. 

The accuracy of Fingerprinting localization can be improved by apply additional mod-

els to the search. In this work, we use KNN (K=3) to filter out the noises during 

tracking stage. 

Generally speaking, Fingerprinting positioning may take a longer time in training and 

take additional efforts in calibration as radio fingerprints or the infrastructure might 

change over time. For example: If a new building appears after we trained the radio 

map, we need to re-train the surrounding grids for calibration. But with Centroid algo-

rithm, we do not have to change a thing. The Fingerprinting method consumes more 

processor resources than Centroid on the mobile device because the location estimation 
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time is O(N), while Centroid takes O(1). Therefore, it is relatively not suitable for the 

applications in mobile devices, especially when the training area is large. 

Finger 4 illustrates the operation of Fingerprinting algorithm. The localization system 

will compare its current RSSI fingerprints with radio map and finds the best match, 

G45, as its estimation. 

  
 

 
Fig. 4. Fingerprinting Positioning (find the best match among the grids) 
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Chapter 4  
Implementation 
In order to produce a practical result for the comparison between GSM and Wi-Fi local-

ization, we prototyped working systems on commercial available smart phones with 

both GSM and Wi-Fi radio access. Since our smart phone can provide only one GSM 

operator’s signal at a time, we use the Chung-Hwa Telecom’s SIM (Subscriber Identifi-

cation Module) card as it is the largest telecom operator in Taiwan. The CHT GSM 

operates on both 900MHz and 1800MHz frequency bands. 

4.1Mobile Devices 

Our smart phones are Dopod 585, Dopod 586w, and Dopod 900 [19]. They are pro-

duced by HTC, a Taiwanese company, and may have other names in different countries. 

The type of GPS module is Leadtek 9559x which provides GPS coordinates via Blue-

tooth connection. 

On the software side, Dopod 585 runs the Windows Mobile 2003 SmartPhone Edition, 

Dopod 586W runs the Windows Mobile 5.0 SmartPhone Edition, and Dopod 900 runs 

the Windows Mobile 5.0 Pocket PC Edition. All of them are commercially available 

Smartphones or Pocket PC phones. Dopod 586W and 900 are additionally equipped 

with Wi-Fi radio access. We have chosen the Windows Mobile platform because of its 

easy development environment provided by Microsoft Visual Studio 2005 and it is con-

venient to deploy a user’s program to the phones and debug the system during run time. 



 

18 

Since these smart phones are not equipped with a GPS module by default, we have util-

ized an external Bluetooth GPS receiver in our experiments. We assume that GPS 

coordinates are ground truth.  

       

 

 

4.2 System Architecture 

Thank to Intel Research’s open source project POLS [16], we save a lot of time by us-

ing parts of their project codes while reading GSM and Wi-Fi signals from smart 

phones. With the help of POLS, we can focus our efforts on implementing specific lo-

calization programs in our work. The system architecture is depicted in Figure 6. 

Most of our software programs are written in Microsoft Visual C#, with some in C as 

external libraries. For the outdoor localization system, we have combined our system 

with a GIS map software, provided by Mactiontech’s PaPaDO!SDK [20], which sup-

ports Microsoft SmartPhone 2003 edition. All the software programs can be deployed 

on the smart phones mentioned above. 

Our system is consisted of the following five components: 

Centroid / Weighted Centroid training program: it collects and calculates beacons’ 

coordinates and store them in a beacon database. This database can then be applied to 

both basic and weighted Centroid algorithms. 

Fig. 5.  The cellular phones and GPS receiver used for the research 



 

19 

Centroid / Weighted Centroid tracking program: it reads beacon ID and RSSI in-

formation, and calculates the location estimation by basic Centroid or weighted 

Centroid algorithms. We further compare the estimated position with actual coordinates, 

observed by the GPS module. Thus we can have detailed error distances during experi-

ments. 

Fingerprinting training program: it collects a specified amount of RSSI fingerprints 

on static grid points, calculates the average RSSI, records the (x,y) position on the map 

(indoor) or GPS coordinate (outdoor), and saves them on a fingerprinting radio map. 

The number of RSSI collections in a static grid can be adjusted according to the charac-

teristics of the calibrated environments. For example, in an office environment, we may 

be able to collect 20 RSSI fingerprints and calculate the arithmetic mean on the grid. 

However, when driving along the streets, it is impossible to stay on any static points for 

long enough to collect 20 RSSI fingerprints.. 

Fingerprinting tracking program: it observes RSSI fingerprints, and finds the most 

similar grid from the radio map. Some motion models can be applied to the system in 

this tracking stage. However, we only applied simple filtering to remove the outliers 

produced by the KNN method. In the indoor environment, we calculated the error dis-

tances by measuring the Euclidean distance from the estimated position to the ground-

truth position. In the outdoor environment, we assume that ground truth locations are 

GPS coordinated from the GPS modem. 

Error calculation: it reads the current GPS location and compares it with the estimated 

position provided by GSM/Wi-Fi localization system. The results are then output to a 

excel file for further analysis. 
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4.2 GSM Implementation 

Like most commercial cellular phones, our mobile device vendor does not expose stan-

dard APIs for reading GSM modem data to the user level program. As a result, we 

exploited a known hack that reads GSM modem output data left on certain memory ad-

dress on the smart phone in the system, and then interprets such GSM modem data to 

valid cell information. We implemented the GSM RSSI reading functions as an inde-

pendent task which provides RSSI information to the main task every second. The main 

program can then receive and update the positional estimation as the same rate as the 

GSM reading task. Using this hack, both Cell ID and Channel ID can be read and sent 

to the localization programs. Normally 6~7 cell IDs and 15~18 channel IDs can be read 

from the Dopod GSM modem. The number of accessible IDs is highly depending on the 

mobile devices. In general, the more IDs accessible the higher accuracy the system can 

provide. The GSM reading flows in our system is depicted in Figure 7. 

Fig. 6. System Architecture (Tracking) 
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4.3 Wi-Fi Implementation 

Wi-Fi RSSI information is accessible from the device IO APIs provided by the Win-

dows Mobile 5.0. Similar to the GSM reading functions, we implemented Wi-Fi 

readings in an independent task which sends its readings to the main task every second. 

The MAC address and SSID are read, together with RSSI (in dBm), in this task. Since 

Wi-Fi signal information is provided in standard APIs, a mobile device can obtain al-

most all actually nearby Wi-Fi access points from the device IO APIs. The Wi-Fi RSSI 

reading flows in our system is depicted in Figure 8. 

 
 

Fig. 8. Wi-Fi Implementation Diagram 

Fig. 7. GSM Implementation Diagram 
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4.4 Test Environments 

We would like to conduct real experiences in different indoor and outdoor environments 

to evaluate the performance of GSM and Wi-Fi implementation. In Taiwan, GSM net-

work deployment is available in almost all road accessible areas. Wi-Fi signals are 

available in most places in Taipei city as it claims to be the largest Wi-Fi city in the 

world [41].  

In the outdoor experiments, three types of environments are selected to evaluate our im-

plementation. They are (1) urban, (2) rural, and (3) campus. Hsin-Yi District in Taipei 

City, is selected as the urban area where it is a place with lots of commercial activities. 

It is supposed to have more GSM cellular towers than other non-commercial areas. 

Based on our measurements, within this 2 km2 area, GSM cellular tower density is 27 

cells per km2, whereas the Wi-Fi AP (Access Point) density is around 500APs per km2. 

In the area, we observed stronger GSM RSSI in average than other places. The rural 

area, Long-Tan village, in Tao-Yuen County, is a small area of 1 km2. The cellular 

tower density is 9 cells / km2 and Wi-Fi AP density is 77APs / km2 In NTU (National 

Taiwan University) main campus, where it is a place of 1 km2, the GSM cellular tower 

density is 20 cells / km2, AP density is around 800APs / km2.  

In the indoor experiments, we have chosen the 3rd floor at NTU CSIE building as our 

testbed. From our experiments, we can observe around 5~6 GSM cellular towers and 

18~20 Wi-Fi access points. 

4.5 Error distance 

Error distance is the result that we need to record while comparing accuracy with differ-

ent localization methods and under different environments. In indoor experiments, we 
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have the error distances by measuring the differences between estimated location and 

real location. In outdoor experiments, GPS is used as the ground truth. We generate 

beacon location database by recording beacon ID and RSSI fingerprints, together with 

GPS coordinates in training stage. In tracking stage, we calculate an object’s estimated 

location, noted by GPS coordinates, and compare it with observed GPS coordinates at 

run time. The outdoor distance is calculated by Great Circle Distance Formula: 

[ ] [ ]
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∆ΦΦ+ΦΦ
∆ΦΦ−ΦΦ+∆Φ

=∆
λ

λλ
σ

coscoscossinsin
coscossinsincossincos

arctan
2121

2
2121

2
2

 

Let ( 1Φ , 1λ ), ( 2Φ , 2λ ) be the latitude and longitude of two points, respectively, λ∆  be 

the longitude difference and σ∆  be the angular difference/distance. If r is the radius of 

the sphere, then the great-circle distance is r σ∆ . 
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Chapter 5  
Experimental Results 
Four experimental settings were chosen, namely urban, rural/residential area, NTU 

main campus and office (NTU CSIE building). Only the Fingerprinting algorithm was 

tested inside the CSIE building, since the beacon coordinates could not be determined 

without using a GPS. In other experimental settings, all three positioning algorithms 

(Centroid, Weighted Centroid, and Fingerprinting) were employed for comparison be-

tween GSM and Wi-Fi localization systems. 

5.1 Precision and Accuracy 

5.1.1 Urban Area  

For an urban area, the Hsin-Yi District of Taipei was chosen as the testbed. Hsin-Yi 

District encompasses an area of 2 km2, and is one of the busiest commercial areas in 

Taipei City, making it likely to have many GSM cellular towers and dense Wi-Fi access 

point distribution. The data training stage identified 27 cellular towers and 497 Wi-Fi 

APs in the area. Figure 9 shows the distribution of GSM and Wi-Fi beacons in Hsin-Yi 

District.  
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The average error of location estimation obtained by the Centroid localization method, 

was found to be 245 meters, whereas that obtained by Weighted Centroid was 161 me-

ters. The average error of location estimation for Wi-Fi was 64 meters, whereas the 

Weighted Centroid was 84 meters.  

Figure 10 plots the CDF (Cumulative Distribution Function) of the Centroid testing re-

sults Figure 11 plots the CDF of the Weighted Centroid testing results, and Fig. 12 plots 

the CDF of Fingerprinting results in Hsin-Yi District. 
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Fig. 10. CDF of GSM and Wi-Fi with Centroid Algorithm in urban area 

Fig. 9. GSM (Left) and Wi-Fi AP (Right) Distributions in Hsin-Yi District. 
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Urban Weighted Centroid CDF
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Urban Fingerprinting CDF
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Since Centroid computes the arithmetic mean of all observed beacons, its accuracy ap-

pears to be proportional to the density of beacon distribution. Therefore, the accuracy of 

determining the Wi-Fi distribution was better than that of GSM distribution. Notably, 

the Weighted Centroid obtained worse results than basic Centroid with Wi-Fi localiza-

tion, possibly because the Wi-Fi AP distribution in the area does not scatter in the same 

plane, but is located at various heights. Thus, Wi-Fi signal may be weak when it is actu-

ally nearby but located high above, in which case it is given a low weight, resulting in a 

large error distance. 

Fig. 12. CDF of GSM and Wi-Fi with Fingerprinting Algorithm in urban area 

Fig. 11. CDF of GSM and Wi-Fi with Weighted Centroid Algorithm in urban area 
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Therefore, Centroid positioning would have a better performance than Weighted Cen-

troid in an area with dense high buildings. Figures 13 (Centroid/Weighted Centroid) and 

14 (Fingerprinting) summarize the localization system testing results. 

Hsin-Yi District Centroid Localization   
 Average(m) Max(m) Min(m) STD(m) 

GSM (basic) 245 448 11 129 

GSM (Weighted) 161 418 18 95 

Wi-Fi (basic) 64 225 2 48 

Wi-Fi (Weighted) 84 218 2 48 

. 

 

Hsin-Yi District Fingerprinting Localization   
 Average(m) Max(m) Min(m) STD(m) 

GSM 113 192 9 57 

Wi-Fi 35 82 1 21 

 

The Fingerprinting localization method involves walking through the training areas, and 

collecting each radio scan as a single grid. According to our walking temple, the grid 

interval was around 2 meters. Fingerprinting localization achieved a better result than 

Centroid method in accuracy in this area. The average error distance of GSM localiza-

tion was 113m, while that of Wi-Fi was 35m.  

We believe that an error distance of 35–113m is acceptable, because that may be just 

the width of a boulevard. If the application does not need very high accuracy outdoors, 

Fig. 13. Centroid/ Weighted Centroid Localization results in Hsin-Yi Dist. 

Fig. 14. Fingerprinting Localization results in Hsin-Yi Dist. 
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then it is an alternative to GPS, particularly for the applications that exploit the ambigu-

ity caused by the error [33, 34].  

5.1.2 Rural Area  

To assess the performance of GSM and Wi-Fi localization systems in a rural area, 

Long-Tan (Tao-Yuen County), a suburban area next to Taipei was chosen as the test-

bed. Long-Tan is a residential region with few high buildings and commercial activities. 

Nine GSM cell towers and 77 Wi-Fi access points were found in the area of around 1 

km2. Figure 15 illustrates the distribution of GSM and Wi-Fi beacons in Long-Tan. 

        

 

For Centroid localization, the average error distance was 199m with the basic Centroid 

algorithm, and 156m with the Weighted Centroid algorithm. In the area under Wi-Fi 

coverage, the average error distance was 99m with the basic Centroid algorithm, and 

71m with the Weighted Centroid algorithm. Since Wi-Fi coverage is not available eve-

rywhere in Long-Tan, the Wi-Fi localization is restricted to specific regions. 

Figure 16 plots the CDF (Cumulative Distribution Function) of the Centroid testing re-

sults; Fig. 17 plots the CDF of Weighted Centroid testing results, and Fig. 18 plots the 

CDF of Fingerprinting results in Long-Tan. 

Fig. 15. GSM(Left) and Wi-Fi(Right) Distributions in Long-Tan 
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Rural Centroid CDF
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Rural Weighted Centroid CDF
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Rural Fingerprinting CDF
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Fig. 18. CDF of GSM and Wi-Fi with Fingerprinting Algorithm in rural area 

Fig. 17. CDF of GSM and Wi-Fi with Weighted Centroid Algorithm in rural area 

Fig. 16. CDF of GSM and Wi-Fi with Centroid Algorithm in rural area 
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Notably, the probability distribution of Wi-Fi Fingerprinting has a few gaps owing to 

the discontinuity of Wi-Fi signals in the area. 

 Figures 19 (Centroid/Weighted Centroid) and 20 (Fingerprinting) summarize the local-

ization system testing results in a rural area. 

Centroid (Long-Tan)   
 Average(m) Max(m) Min(m) STD(m) 

GSM(basic) 199 498 27 111 

GSM(weighted) 156 308 9 75 

Wi-Fi(basic) 99 403 2 81 

Wi-Fi(weighted) 71 200 3 47 

 

 

Fingerprinting (Long-Tan)   
 Average(m) Max(m) Min(m) STD(m) 

GSM  155 302 20 54 

Wi-Fi 52 158 17 51 

 

 

For Fingerprinting localization, the average error distance was 155m, and the average 

error distance of Wi-Fi was 52m. Since the Wi-Fi access is not available everywhere in 

the area, many signal gaps were observed in the tracking stage, possibly distorting the 

results of Wi-Fi Fingerprinting. 

Significantly, the numbers of Wi-Fi access points varied according to time of day. The 

number of available APs was found to be greater in the night time than in the day time. 

Fig. 20. Fingerprinting results in Long-Tan. 

Fig. 19. Centroid localization results in Long-Tan. 
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This may be because people open their APs for internet access when they come home 

from work in the evening, whereas they go to work in the city in the day time and 

switch off their APs, causing the radio emission from those APs to disappear. The un-

stable Wi-Fi RSSI sources may influence the tracking accuracy if training and tracking 

occur during different time segments. Therefore, we conclude that Wi-Fi signals may 

not be appropriate sources of localization systems in residential areas. 

5.1.3 Campus 

Since wireless networks are increasingly adopted on campuses, a university campus is 

likely to have a denser distribution of Wi-Fi APs than other places. Based on this as-

sumption, NTU main campus was chosen as the testbed to evaluate the possibilities of 

using GSM and Wi-Fi localization systems in campus. As expected, many Wi-Fi bea-

cons were found, while the number of GSM cell towers was slightly smaller than in a 

commercial area. NTU main campus has an area of 1km2. Twenty GSM cell towers and 

859 Wi-Fi Access Points were observed around the campus. Figure 21 shows the distri-

bution of GSM and Wi-Fi beacons in NTU. 

       

 

The density of GSM cell towers on campus, measured by the Centroid localization 

method, was smaller than that in the Hsin-Yi District, thus yielding a slightly worse re-

sult with average error distance of 294 meters, and 193 meters when using the Weighted 

Fig. 21. GSM(Left) and Wi-Fi(Right) distributions in NTU campus 
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Centroid algorithm. The average error distance for Wi-Fi obtained by the basic Centroid 

algorithm was 37m, while that obtained by the Weight Centroid algorithm was 35 me-

ters. Although the high density of Wi-Fi AP distribution in the NTU main campus is 

similar to that in Hsin-Yi Dist., the result is quite different. In NTU campus, unlike 

Hsin-Yi Dist., the Weighted Centroid of Wi-Fi localization was slightly better than that 

from the Centroid algorithm, probably because most Wi-Fi APs were distributed at the 

same height. The heights of buildings in campus are mostly less than 6 floors, while 

Hsin-Yi District has many skyscrapers, including the famous Taipei 101 building with 

101 floors. 

Figure 22 plots the CDF of Centroid testing results; Fig. 23 plots the CDF of the 

Weighted Centroid test results, and Fig. 24 plots the CDF of Fingerprinting results in 

NTU campus. 
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Fig. 22. CDF of GSM and Wi-Fi with Centroid Algorithm in campus 



 

33 

Campus Weighted Centroid CDF
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Campus Fingerprinting CDF
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Figures 25 (Centroid/Weighted Centroid) and 26 (Fingerprinting) summarize the local-

ization system testing results in NTU campus.  

NTU Centroid Localization    
 Average(m) Max(m) Min(m) STD(m) 

GSM (basic) 294 537 12 155 

GSM (Weighted) 193 502 22 114 

Wi-Fi (basic) 37 115 4 25 

Wi-Fi (Weighted) 35 114 3 23 

 

Fig. 23. CDF of GSM and Wi-Fi with Weighted Centroid Algorithm in campus 

Fig. 24. CDF of GSM and Wi-Fi with Fingerprinting Algorithm in campus 

Fig. 25..Centroid localization results in NTU campus 
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An average of 149 meters was obtained in GSM Fingerprinting localization. The GSM 

Fingerprinting result in NTU main campus was worse than that in Hsin-Yi Dist. The 

average Wi-Fi Fingerprinting localization error was 29m, which is the best outdoor re-

sult among all tested areas. We obtained better accuracy because the density of AP 

distribution was sufficiently high, thus yielding richer RSSI fingerprints for the Wi-Fi 

localization system. 

 Wi-Fi signals can almost certainly be found from different access points in every part 

of campus. Therefore, the good result of Wi-Fi localization makes Wi-Fi a good candi-

date for localization system on campus. An average error of 29–37 meters should be 

good enough for a student to distinguish between different buildings. Alternatively, the 

localization system can be combined with the campus tour guide system.  

NTU Fingerprinting Localization    
 Average(m) Max(m) Min(m) STD(m) 

GSM 149 253 22 45 

Wi-Fi 29 60 3 20 

 

  

5.1.5 Indoors 

To study the feasibility of localization systems in omni-environments, experiments were 

also conducted indoors. The 3rd floor of the NTU CSIE department building was util-

ized as the testbed. Because GPS signals are not available indoors, beacon locations 

could not be collected for running Centroid localization as was done outdoors. Figure 

27 displays the training grids in the CSIE building. 

Fig. 26. Fingerprinting Localization results in NTU campus 
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For indoor Fingerprinting localization, the grid size was set to 2m×2m, and 20 RSSI 

fingerprints were collected in a static point in the training stage. The grids were distrib-

uted along the hallway. The error was found to be quite large if the cell ID was applied 

for GSM localization, which can provide 5–6 cell IDs at a time. The system can even 

estimate the location in the opposite corner (around 40m away). Therefore, to improve 

the accuracy, channel ID rather than Cell ID was used as the beacon ID in GSM indoor 

localization, because the channel ID can provide richer signals, typically detecting 15–

20 channels at a time. Wi-Fi localization found 18–20 simultaneous AP signals in the 

CSIE building. 

Figure 28 plots the CDF of Fingerprinting results in CSIE building.  

Fig. 27. The 3rd floor of CSIE building and grids for Fingerprinting 
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Indoor Fingerprinting CDF

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35

Error(m)

P
ro
ba
bi
li
ty
(%
)

GSM

Wi-Fi

 

 

The experimental results indicate an average error of 4.9 meters with Wi-Fi localization, 

and an average error of 10.9 meters with GSM localization. These results demonstrate 

that Wi-Fi localization can provide a better precision and accuracy in indoor space, pro-

vided that sufficient Wi-Fi radio sources are provided. 

If cell ID was adopted rather than GSM channel ID as the beacon identity, then the ac-

curacy was normally over 20m. The error distance itself was not measured, because the 

result is no better than that of random guessing. Figure 29 shows the summary of Fin-

gerprinting localization testing results indoors. 

Indoor Fingerprinting in CSIE Building   
 Average(m) Max(m) Min(m) STD(m) 

GSM 10.9 32 1 6 

Wi-Fi 4.9 11 0.6 2.4 

 

5.1.6 Beacon numbers vs. Accuracy 

In addition to above experiments, we perform an experiment to observe the relationship 

between the accuracy and the observed beacon numbers with Fingerprinting algorithm. 

Fig. 29. Indoor Fingerprinting results in CSIE building

Fig. 28. CDF of GSM and Wi-Fi Indoor Fingerprinting in CSIE building 
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The channel ID method of GSM localization is utilized in the experiment because the 

numbers(up to 20) of observed channels are good enough for the comparison. The result 

is displayed in Figure 30. From the figure, we found the accuracy is proportional to the 

simultaneous observed beacon number. The higher accuracy we can have form the lo-

calization system as the number of observed beacons increases. We also found from the 

figure that with the same number of beacons, the accuracy of GSM is typically worse 

then Wi-Fi localization system. 
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5.1.7 Discussion 

Experimental results reveal that the accuracy of Wi-Fi was generally 2–8 times higher 

than that of GSM localization. The Weighted Centroid algorithm was found to improve 

accuracy of GSM localization by 30%~50%, compared with the basic Centroid algo-

rithm, the two algorithms yielded similar results with the Wi-Fi localization system. We 

conclude that the shorter transmission range of Wi-Fi means that its distribution tends to 

be denser than that of GSM. The weighted method would not improve significantly in 

such a dense-beacon environment, because the mobile device observes similar signal 

strengths, and giving them similar weights. Additionally, the accuracy of Wi-Fi local-

Fig.30. Beacon numbers vs. Accuracy
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ization system was proportional to the density of Wi-Fi access points in our experi-

ments, but density did not significantly affect the results of the GSM localization 

system. 

Wi-Fi localization system can provide better accuracy than GSM, as mentioned above, 

but Wi-Fi signal gaps were often observed in suburban and even urban area. Therefore, 

if Wi-Fi localization is used on its own, then an object may often lose its position in an 

area with sparse Wi-Fi access point density. Conversely, GSM provides broader cover-

age than Wi-Fi, although it has a lower accuracy than the Wi-Fi localization system. 

The GSM localization system can at least guarantee to find the position of an object 

within a reasonable error range.  

Our outdoor experimental result(113m) of the GSM localization is slightly worse than 

the result(94m) presented in [27]. We believe the differences might be derived from the 

implementations of Fingerprinting algorithm. We utilize all observed GSM cells to cal-

culate the Euclidean distance and give the mismatched GSM cells penalties, while [27] 

chooses the n strongest GSM cell signals to calculate the Euclidean distance. Indoor ex-

perimental result(5m) of the GSM localization in this work is also slightly worse than 

the result(2.5m) presented in [13]. In [13], they observed up to 29 GSM channels in-

doors, but we normally observed 15~18 GSM channels in CSIE building. That is one 

possible reason to explain the differences between these two works, since more signal 

sources can provide richer radio fingerprints. 

5.2 Other evaluation metrics  

As well as the precision and accuracy compared above, some other metrics can be em-

ployed OR utilized to evaluate the performance of the GSM/Wi-Fi localization systems. 
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Infrastructure Availability: 

Mobile station based methods of implementing localization system involves effort in 

training and calibration. First, in the training stage, the locations of the beacons or the 

radio fingerprints on the grids need to be discovered. The radio map database is used 

later for tracking. Because the infrastructure may change over time, the radio map needs 

to be calibrated to maintain the accuracy.  

GSM is a fairly stable network, since the costs of adding and removing a cellular tower 

is high. Operators tend not to change the infrastructure frequently. Wi-Fi is a relatively 

unstable infrastructure because some of the radio sources are from residential access 

points. The Wi-Fi localization system might adopt all available Wi-Fi signals, irrespec-

tive of whether they are from public or private access points. This work has found that 

Wi-Fi signals from public access points are generally stable. Wi-Fi radio sources from 

residential access points are unstable because they are usually switched off if not used. 

This is a constraint and potential hazard when utilizing a Wi-Fi localization system. 

Hardware Capability: 

Cellular phones currently support a variety of communication peripherals, such as Wi-

Fi, Bluetooth and infrared. GSM is the most basic function of a regular cellular phone, 

even with 3G cellular phones, which are normally designed with support for GSM. 

GSM is currently the most widely available radio source that can be adopted with a mo-

bile phone. Some high-end cellular phones are equipped with Wi-Fi or even GPS 

modules. These cellular phones have the flexibility of adopting various localization sys-

tems, including the GSM and Wi-Fi localization systems mentioned herein. 

Power and computing consumption: 
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Computing power is proportional to the electrical power consumption. Heavy processor 

loading on a mobile device reduces the battery life. Experiments results show that Wi-Fi 

localization consumes more power than GSM. With Dopod 586W, the system is run 

with only GSM localization, and then the phone can continuously run for 24 hours. If 

Wi-Fi is activated, then the phone can run for only 5 hours. Since Wi-Fi localization 

system needs to estimate an object’s location in real-time, it prevents the phone from 

entering sleep mode. Because cellular phones are designed primarily for voice commu-

nication, their designers may pay most attention to power saving in the GSM mode. 

Although Wi-Fi may have its own power saving features, the localization does not work 

if the handset enters sleep mode. Hence, the constraints of power consumption on cellu-

lar phones mean that Wi-Fi localization is not appropriate for a cellular phone. 

 Figure 29 summarizes the above discussions and the experimental results. 

 Accuracy and 

Precision 

Infrastructure 

Availability 

Hardware 

Capability 

Power Con-

sumption 

GSM  ★ ★ ★ 

Wi-Fi ★    

 

 

5.3 Practical Issues 

Some practical issues that would affect the results of a localization system were discov-

ered during the experiments. These factors have to be addressed if the localization 

system is going to be deployed in the real world.  

Fig. 31. Performance summary table (★ stands for a better performance) 
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5.3.1 Limited RSSI sources 

If the application, like library guidance system, needs accurate location information, 

then the selection of a rich source of beacons is a critical factor to bringing sound local-

ization results. However, the embedded design of most cellular phones means that most 

users probably do not know how to read RSSI sources from radio modems or device 

drivers. Even if the data could be read from some of these cellular phones, it might be 

less than the expected numbers to constitute an accurate localization system. Experi-

ments results demonstrate that Dopod 585 or 586w can output 6–7 cell IDs with RSSI, 

which may not be sufficient to achieve a good accuracy. The average error was around 

150 meters in our experiments, whereas Wi-Fi can achieve 29 meters with around 15–

20 AP readings.  

For GSM localization, if BCCH (Broad Control Channel), the channel ID, is utilized 

instead of Cell ID, then richer signal sources can be observed, typically 15–18 readings 

from different channels in our tested environments. An accuracy of 11 meters can then 

be achieved indoors if channel ID is applied to reconstruct the GSM localization sys-

tem. However, owing to the nature of channel reuse in GSM networks, moving across 

several cells causes the channel ID to be duplicated. Therefore, the channel ID is only 

suitable for use in a small area, where each channel number is unique.  

Experiment results reveal that a Wi-Fi localization system seems to be good in both 

campus and commercial area. Accuracies of 29m outdoors and 5m indoors can be 

achieved. Conversely, rural areas have fewer Wi-Fi signal sources than GSM cell, or 

nearly none. Therefore, Wi-Fi RSSI cannot be applied to locate objects in a rural envi-

ronment. 
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5.3.2 Resource constraints on mobile devices 

Filters such as KNN (K-nearest neighbors), Cluster or Particle filters usually have to be 

applied when adopting a Fingerprinting localization system or other filters to find the 

grid with highest probability once all possible grids have been found. These methods 

would be valuable, but they introduce additional computing efforts, since the mathe-

matical calculation for the filters consume significant computing power on the device. 

Due to the limited computing resources on cellular phones or mobile devices, complex 

filters or motion models should not be applied to the tracking programs. 

By contrast, the Centroid algorithm only employs straightforward arithmetic addition 

and division during the tracking stage. It consumes few CPU resources, and therefore 

may be a good solution for a localization system on a mobile device, which typically 

has limited computing resources. 

From the data storage point of view, in the Fingerprinting localization system, the data 

occupies about 850 bytes (including 33 beacons) in each grid, assuming a grid size of 

10×10 meters. According to the log sample above, a database for an area of 1km2 re-

quires at least 10,000×850 = 8,500,000 bytes. Taipei has an area of 272km2, and 

therefore needs 8,500,000×272 = 2,312,000,000 bytes for its localization database. This 

is too big volume even put for a 2G memory card on a mobile device. The typical stor-

age space of a beacon in a Centroid localization system is 43 bytes. Given that average 

beacon density in an urban area is 500beacons/km2 on average, 43×500×272 = 

58,480,000 bytes are necessary to complete a city wide radio map of Taipei. The Cen-

troid algorithm is a fairly feasible way of designing a large-scale localization system on 

mobile devices. 
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5.3.3 Training condition 

In Centroid localization, a number of beacons need to be found in the training stage, 

since the tracking result is shown to be proportional to the number of reading beacons. 

The Centroid method was employed during the experiments to locate all available bea-

cons. The training quality depends on the number of sampling points and the stability of 

observed signal strength. Experimental results show that fewer beacons are obtained 

when collecting the radio sources by car driving than by walking. This is because some 

of the weak signals may be ignored during driving, and the fluctuation of the signal 

strength may confuse the training program. Experimental results indicate that signals 

can be collected effectively by riding a bicycle or walking. 

The accuracy of Fingerprinting localization may depend on the stability of signal 

sources. Because the radio signal fluctuates frequently with different weather and envi-

ronments, stable training data are necessary to avoid significant errors during the 

tracking stage. Experimental results show that the quality of Fingerprinting localization 

depends heavily on the quality of training. Increasing the time spent on each grid during 

data collection enhances the tracking accuracy well. 

5.3.4 Scale of RSSI readings 

The scale of radio signal reading was found to significantly affect the accuracy of loca-

tion estimation. The scale of Wi-Fi RSSI readings using Dopod 586W was 10dbm. The 

readings from the Wi-Fi driver were mostly −90dbm, −80dbm or −70dbm from our ob-

servation. Because the device has only 3 RSSI types, the localization system can easily 

discover grids with similar radio fingerprints during the tracking stage, and obtain 

worse results in consequence. 



 

44 

After the device was changed to Dopod 900, which can provide 1dbm scale in Wi-Fi 

RSSI readings, the tracking results improved significantly from 100 meters to 20–30 

meters. Hence, we believe the accuracy of a localization system is proportional the level 

of detail of information that a device can provide.  
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Chapter 6  
Hybrid System 
Following the experimental results, this chapter discusses the feasibility of building a 

hybrid localization system that combines the benefits of both GSM and Wi-Fi localiza-

tion systems. 

6.1 Motivation 

Experimental results reveal that GSM and Wi-Fi each have their own advantages in 

specific areas or domains. For instance, urban areas have many GSM cellular towers 

and Wi-Fi access points, so are good for both GSM and Wi-Fi localization systems. Ru-

ral areas have fewer GSM cellular towers than urban areas have, and have many gaps in 

the Wi-Fi signal gaps. This work recommends applying GSM localization system in 

such an environment, because GSM signals provide better coverage than Wi-Fi signals. 

Wi-Fi localization produces good results on campus, where Wi-Fi signals are pervasive. 

Wi-Fi can provide accurate localization in an indoor environment if the signal is avail-

able and the number of observed Wi-Fi fingerprints is large enough. Figure 30 shows an 

environment with varied density of GSM and Wi-Fi. 
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GSM and Wi-Fi are normally treated as two different localization systems. Individual 

radio maps need to be trained and individual program need to be loaded, before starting 

to run the system. The system must be switched manually once the application requires 

high accuracy in complex environments,. Hence, a hybrid system that can automatically 

switch between GSM and Wi-Fi localization is needed.  

6.2 Hybrid Architecture 

The accuracy of a localization system is proportional to the density of valid beacons ac-

cording to our experimental results. Therefore, the beacon density was taken as the 

criterion for switchover between different systems 

Wi-Fi localization generally has higher accuracy than GSM. However, GSM coverage 

is broader than Wi-Fi in terms of infrastructure availability. Therefore, a GSM localiza-

tion system can be expected to work normally in most places. A better precision and 

accuracy can be expected from a Wi-Fi localization system in areas with good Wi-Fi 

coverage. 

Fig. 32. A hybrid environment with different GSM or Wi-Fi density 



 

47 

The system begins by loading a radio map database, which consists of GSM and Wi-Fi 

beacon locations or RSSI fingerprints. It then detects the density of GSM and Wi-Fi 

beacons nearby. If the density of GSM signals is higher than that of Wi-Fi, then the hy-

brid system runs GSM localization automatically. The hybrid system meanwhile 

continues observing the density of Wi-Fi signals, to determine whether it is now above 

that of GSM signals, in which case it changes the program to the Wi-Fi localization sys-

tem. Figure 31 depicts the system flow. 

 

 

GSM can provide wider coverage, and Wi-Fi can provide higher accuracy in general. 

The hybrid system is more accurate than just a single localization system, because it 

combines the advantages of both, and can solve the Wi-Fi signal gap problem. 

Fig. 33. System flow of GSM/Wi-Fi Hybrid Localization 
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6.3 Challenges 

Because the localization in the hybrid system is adaptive to the density of beacons, both 

the GSM and Wi-Fi radio map databases need to be stored on the mobile device. This 

creates the problem of limited storage on mobile devices, as discussed in Chapter 5.3.2. 

A possible solution is to setup a backend server, which stores all available radio map 

databases, somewhere on the network. The mobile devices can request the server to 

provide corresponding radio maps on demand, and thus decrease the required storage 

space and computing effort, while the hybrid localization systems are activated. 
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Chapter 7  
Conclusion  
This work examines the feasibility of incorporating GSM and Wi-Fi localization sys-

tems in indoor and outdoor environments, particularly in a large outdoor area. Several 

combinations of experiments are performed to show the expected precision and accu-

racy of localization systems using) different algorithms. Experimental results indicate 

that with small training efforts, an accuracy of 29 meters can be obtained outdoors 

where this value is less than the width of an ordinary street. The error distance indoors 

in our experiments is less than 5m. We believe that Fingerprinting is appropriate for 

both indoor and outdoor environment, since it can provide higher accuracy, but its train-

ing and calibration costs are considerably higher than those of other algorithms. This is 

a cost issue while planning to deploy such a system. The error distance of the Centroid 

algorithm can achieve 37 meters outdoors in average in this work. Because the training 

process of the Centroid algorithm takes less time and involves little calibration effort, 

the Centroid algorithm is an appropriate candidate for outdoor localization on mobile 

devices.  

The experiments in this work do not apply motion models, instead simply performing 

comparisons with raw data. A good motion model is strongly needed to improve accu-

racy by filtering out noises. However, if a motion model is introduced, then the cellular 

phone has to consume additional computing resources for extra mathematical opera-

tions. Resource consumption is a crucial issue with current mobile devices or cellular 

phones. Nonetheless, as hinted in “Moore’s Law”, this issue is likely to be resolved on 

mobile devices soon. 
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For future works, the study of automatic training and calibration should be a vital factor 

in mobile station based localization systems, particularly in dynamic environments. Ad-

ditionally, because GSM and Wi-Fi are available indoors and outdoors, but provide 

different levels of strength in localization, the construction of a GSM/Wi-Fi hybrid lo-

calization system, which is practical in real environments, is of interest.  
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