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摘要 

 
 

 
「定位精準度」是評量一個定位系統效能最重要的指標，在現存的各種

定位系統中，「無線電波干涉定位法（Radio Interferometric Positioning, RIP）」

是少數可以達到公分尺度精準度的定位系統。在這篇畢業論文中，我們動態

選擇環境中已知位置的感應點當作無線電波的發射點，藉此改善對於多個目

標同時定位時的定位精準度。我們建立了一個誤差估計模型，這個模型可以

預測使用任何發射點組合時的定位誤差。利用這個誤差估計模型，我們發展

出「適性的無線電波干涉定位法（Adaptive RIP）」，可以根據定位目標的位置

選擇最佳的發射點組合。我們實做 Adaptive RIP，並且在實際環境中實驗。

根據我們的實驗結果，不管在單一目標或是多個目標，Adaptive RIP 的定位

精準度都比原本的 RIP好，平均定位精準度進步了 47%~60%。 

 

 



 

Abstract 
 
 
 

One of the most important performance objectives for a localization system 

is positional accuracy. It is fundamental and essential to general location-aware 

services. The radio interferometric positioning (RIP) method [1] is an exciting ap-

proach which promises sub-meter positional accuracy. In this work, we would like 

to enhance the RIP method by dynamically selecting the best anchor nodes as 

beacon senders, and further optimizing the positional accuracy when tracking 

multiple targets. We have developed an estimation error model to predict posi-

tional error of the RIP algorithm given different combinations of beacon senders. 

Building upon this estimation error model, we further devise an adaptive RIP 

method that selects the optimal sender-pair combination (SPC) according to the 

locations of targets relative to anchor nodes. We have implemented the adaptive 

RIP method and conducted experiments in a real sensor network testbed. Experi-

mental results have shown that our adaptive RIP method outperforms the static 

RIP method in both single-target and multi-target tracking, and improves the av-

erage positional accuracy by 47%~60% and re-duces the 90% percentile error by 

55%~61%. 
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Chapter 1 

Introduction 

Many ubiquitous computing applications require deployment of a sensor network 

infrastructure to collect a variety of data sensed from the physical world. These 

sensor data are then processed to implement different digital services that can ex-

hibit intelligent context-aware behaviors by automatically adapting their services 

to changing environments. In order to make correct inference on these sensor data, 

these systems require reliable, accurate location information on the observed sen-

sor data. This brings up the need for accurate location tracking in sensor networks. 

To address this need, there have been many sensor network localization sys-

tems utilizing different sensing techniques, e.g., MoteTrack [9], Cricket [10], 

Spotlight [13], APIT [14], ENSBox [16], etc. Among them, the radio interfer-

ometric positioning (RIP) method from the NEST project [1] has shown a prom-

ising, exciting location sensing technique for sensor network applications. Its 

main advantages are (1) sub-meter positional accuracy (e.g., in the range of tens 

of centimeters), (2) a long sensing range (e.g., 50~100 meters between two anchor 

nodes), and (3) no additional hardware requirement (i.e., reusing the same radio 

module for both communication and localization).  

In this work, our innovations come in two parts. First, we have developed an 

estimation error model for the RIP method, which can accurately predict the 
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amount of estimation error given the relative positions of anchor sensor nodes and 

(moving) target nodes. We have also validated the correctness of this estimation 

error model empirically from an experimental sensor network testbed. Building 

upon this estimation error model, our second innovation is the design and imple-

mentation of an adaptive RIP method that dynamically chooses the best anchor 

nodes in locating targets and minimizes their positional error. Our experimental 

results have demonstrated that our adaptive RIP method outperforms the static 

RIP method, improving the average positional accuracy by 47%~60% and reduc-

ing the 90% percentile error by 55%~61%. 

The remainder of this paper is organized as follows. Section 2 provides back-

ground on the basic RIP system, and formulates our multi-target tracking problem. 

Section 3 derives our estimation error model that can accurately predict the esti-

mation error in the RIP method. Section 4 presents the design of our adaptive RIP 

method. Section 5 describes its implementation. Section 6 explains the experi-

mental setup and results. Section 7 discusses related work. Section 8 draws our 

conclusion and future work. 
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Chapter 2 

Background on the Radio Inter-
ferometric Positioning (RIP) 

We first provide a brief background on the original, single-target RIP method, fol-

lowed by our multi-target tracking RIP extension. For a more detailed description 

of the original RIP method, we refer interested readers to [1].   

 

 

Figure 1. The RIP method 



 

The RIP method is a novel way of localizing targets by measuring relative 

phase offset. It is typically realized in a sensor network setting [1], involving at least 

three anchor nodes and one target node, all within a common radio communication 

range as shown in Figure 1. Among the anchor nodes, two of them, A and B, act as 

senders and transmit pure sine wave simultaneously with two close frequency fA 

and fB. At nearby frequency, these two signals interfere with each other, therefore 

producing a resulting signal with a low beat frequency | fB – fA |. For example, our 

experiments using two MICA2 Motes with 900 MHz radio showed that interfer-

ence produced a signal with a low beat frequency around 350 Hz. Two sensor nodes 

C and D act as receivers and can use simple hardware afforded on inexpensive 

sensor nodes to detect the phase of this low-beat interference wave.   

Based on the relative phase difference detected on the receivers C and D, a 

geometric constraint among the locations of A, B, C, and D can be derived in the 

following equation (the details of this derivation is described in [1]):  

 

φ∆  = 
λ
π2  (dAD – dBD + dBC – dAC) (mod 2π) (1) 

 

where 
BA ff

c2
+

=λ  , φ∆  is the phase difference detected by receivers C and D,λ is 

the wavelength of the mean carrier frequency of the interference signal, and dXY is 

the distance between nodes X and Y. Furthermore, Equation (1) can be reformulated 

as follows: 

 

π
φ∆

2
λ = dABCD (modλ) , where  dABCD = dAD – dBD + dBC – dAC (2) 

 

In Equation (2), dABCD is also denoted as qrange. Due to (modλ)-related ambiguity 

of dABCD, there can be more than one values of dABCD satisfying Equation (2). In 
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order to resolve this dABCD ambiguity, the system must take multiple measurements 

(e.g., N times) at slightly different frequency channels (or different wavelength 

λi=1..N) and obtain corresponding phase differences φ∆ i. Since each (λi, φ∆ i) pair 

provides an instance of Equation (2), measuring N channels brings N such equa-

tions. To see how well a dABCD value fits this set of equations, an error function is 

defined below. By trying different values of dABCD, it is possible to find the best-fit 

one that minimizes this error function: 

 

error (dABCD) = ∑ −
i

iABCDi
i )),dmod(

2
( λλ

π
φ∆  (3)

 

After qrange is obtained, there are two approaches to track targets as proposed in 

[4]:  target-as-sender or target-as-receiver. In the target-as-sender approach, a 

target is also a sender, and only one target can perform ranging operation in each 

measurement round. On the other hand, in the target-as-receiver approach, multiple 

targets can perform ranging operations in each measurement round independently 

and simultaneously. The tradeoff between these two approaches is concurrency 

(target-as-receiver is better) versus accuracy (target-as-sender is better). We adopt 

the target-as-receiver approach for our multi-target tracking extension. We first 

describe the single-target tracking mechanism, followed by the multi-target exten-

sion.  

Consider the example in Figure 2(a), node D is the tracked target, and nodes A, 

B, and C are anchor nodes with known locations. Then, dABCD can be transformed 

into the following equation: 

 

dABCD + dAC – dBC = dAD – dBD (4)
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Since the left hand side of Equation (4) contains only variables with known values, 

its value can be calculated, and is referred to as trange. Equation (4) can be further 

rewritten as follows:  

 

trange = dAD – dBD (5) 

 

Equation (5) can be drawn as a hyperbolic curve HAB shown in Figure 2(a). It is 

one arm of a hyperbola with two foci A and B passing through D with the 

semi-major axis of the length trange/2. In other words, D can lie anywhere on this 

hyperbolic curve HAB. To precisely locate D, each positioning operation must take a 

second measurement round using a different pair of senders. In Figure 2(a), the 

second measurement round selects nodes A and C as senders, and nodes B and D as 

receivers. This gives another hyperbolic curve HAC. The intersection of these two 

hyperbolic curves (HAB and HAC) fixes the location of D. In this example, (A, B) and 

(A, C) are called sender-pair combination (SPC). We can think of each measure-

ment round selects one pair of senders to jointly localize a moving target.  

 

 

(a)                                                      (b) 
Figure 2. Tracking (a) single and (b) multiple targets with intersections of hyper-
bolic curves. 



 

Multi-target Extension 
Tracking multiple targets simultaneously is similar to single-target tracking, except 

that each target measures and calculates its own trange independently and concur-

rently from Equations (1~5). Figure 2(b) shows a two-target case of nodes D and E. 

Assume that {(A, B), (A, C)} are selected as SPC. This gives two pairs of hyperbolic 

curves: (HAB, HAC) intersecting at the point D, and (HAB’, HAC’) intersecting at the 

point E. In the multi-target extension, we can think of each measurement round 

selects one sender pair to jointly localize all moving targets within a common radio 

range. 

Since the targets’ locations are estimated from the intersection of hyperbolic 

curves, geometric properties of the curves at the intersection points can signifi-

cantly impact the amount of estimation error in RIP. The reason is that these hy-

perbolic curves inheritably have error due to imperfect measurements of qrange at the 

receivers. This error may be amplified to different amount depending on the curves’ 

geometric properties. These geometric properties are in turn dependent on the SPC 

(sender pair combination) selection. Consider the examples in Figure 3(a) and 3(b). 

They share the same spatial layout of sensor nodes but different SPC selection: 

Figure 3(a) selects {(S1, S2), (S1, S4)} and Figure 3(b) selects {(S1, S3), (S2, S4)}. 

The black lines represent hyperbolic curves that perfectly intersect at the target T, 

whereas the gray lines represent hyperbolic curves with an error added to the qrange 

calculation. As shown in these examples, the same amount of qrange error is ampli-

fied differently, causing more estimation error in locating the target T in Figure 3(a) 

than in Figure 3(b). There are two geometric factors contributing to this error am-

plification (positional error is |T’ – T|): (1) the intersectional angle formed between 

H12 and H14 is more acute than the intersectional angle between H13 and H24, and (2) 

the amount of displacement between the black and gray lines is larger in Figure 3(a) 

than in Figure 3(b) at the intersection points.  
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(a)     (b) 
Figure 3. Show the how different SPC selections and their produced geometric 
factors (the intersectional angle and the displacement of hyperbolic curve) affect 
the estimation error in locating the target T. Figure 3(a) selects {(S1, S2), (S1, S4)} 
as SPC, and Figure 3(b) selects {(S1, S3), (S2, S4)} as SPC. The black lines repre-
sent perfect hyperbolic curves that intersect on the target T. The gray ones represent 
hyperbolic curves with the same amount of error added to the qrange calculation, and 
intersect on T’.  

Although Figure 3 shows the effect of these two geometric factors in the sin-

gle-target tracking, such effect is also applicable to multi-target tracking; except 

that for a given SPC selection, each target node at different location can experience 

different effect and varying amount of estimation error. Nevertheless, a good SPC 

selection is still the key in reducing estimation error in multi-target tracking. 

Multi-target tracking must consider estimation errors of all moving targets and 

optimize them as a whole, rather than simply consider the estimation error of a 

single target in single-target tracking. More detailed analysis of the estimation error 

is described in Section 3. 
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Multi-target Problem Formulation 
Since different sender-pair-combination (SPC) gives different amount of estimation 

error, we can turn this multi-target tracking into an optimization problem as follows. 

Given a set of infrastructure anchor nodes with fixed known locations (P1..m), and a 

set of moving target nodes (T1..n) sharing the same radio range as these anchor nodes. 

Each anchor node can be assigned either a sender or a receiver dynamically. Define 

the estimation error as the difference between the actual (ground-truth) position and 

the position estimated by the radio interferometric positioning engine. Design an 

optimization scheme in which by dynamically selecting a set of SPC from (P1..m) to 

localize targets, minimizes the average estimation error of all targets (T1..n). 

The SPC selection algorithm mentioned above is described in more details in 

Section 4, which must utilize an estimation error model that can accurately ap-

proximate the amount of error given a specific SPC selection. The following sec-

tion explains this estimation error model.  
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Chapter 3 

Estimation Error Model 

Given a specific sender-pair combination (SPC) selection and a target node, the 

estimation error model can accurately approximate the amount of estimation error 

from a RIP engine. To derive this estimation error model analytically, we first 

identify factors that contribute to the positional error: (1) qrange estimation error 

(qerror): it comes from imperfect phase difference measurements at the receivers, 

leading to the error in finding the best-fit dABCD from Equation (3); (2) displacement 

of a hyperbolic curve: the minimum distance from the deviated hyperbolic curve to 

the target; and (3) intersectional angle of hyperbolic curves. 

To explain how these factors contribute to the estimation error, consider the 

examples in Figure 4. First, we describe how depending the target T’s position on 

the curve, a displacement of a hyperbolic curve can cause different amount of es-

timation error. In Figure 4(a), the pair of senders (A, B) can produce the perfect 

hyperbolic curve HAB under no qerror, and a slightly displaced hyperbolic curve HAB’ 

under qerror. If the target is at T1, the closest point between the two hyperbolic curves 

is T1’. Regardless of how the other hyperbolic curve intersects with the HAB’, |T1’ – 

T1| becomes the minimum estimation error in locating T1 under qerror. Next, we can 

observe how the estimation error grows when the target position moves to T2 and 

grows even larger when it moves to T3.  
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Second, we want to discuss how the intersectional angle of two hyperbolic 

curves can cause different amount of estimation error in locating a target T. We use 

the example in Figure 4(b). Suppose that the first measurement round produces a 

hyperbolic curve HDE with qerror, and the second measurement round produces a 

perfect hyperbolic curve without any qerror. Consider two such perfect curves HAB 

from the pair of senders (A, B), and HAC from (A, C). From the Figure 4(b), HAB/HAC 

has a different intersection point of T1/T2. In addition, we can observe that because 

the intersectional angle θ1 at T1 is wider than the intersection angle θ2 at T2, the 

positional error of T1 is smaller than the positional error of T2.  

 

 

(a)     (b) 
Figure 4. (a) The displacement of a hyperbolic curve changing with target location. 
(b) Positional error changing with intersectional angle. 



 

 

Figure 5. Intersection of two hyperbolic curves by using SPC {(S1, S2), (S3, S4)}. 

Analytic Expression. We derive the estimation error model mathematically. Con-

sider the single-target case in Figure 5, S1~S4 are anchor nodes, and T is the target. 

The SPC:{(S1, S2), (S3, S4)} gives two hyperbolic curves of H12 and H34. Given 

qerror, these two hyperbolic curves intersect on P. TP  is the distance between the 

target’s ground-truth position T and the estimated position P, or the estimation er-

ror. 

If the target T is not so close to the focus of the hyperbola, i.e., the curvature of 

the hyperbola around the target T is relatively flat, PN  and PM  could be ap-

proximated as straight lines1. Under such an assumption, we calculate TP  by 

solving the geometric problem shown in Figure 6. Values unknown are TN , 

TM (namely, the displacement), and intersectional angle θ. Described in the fol-

lowing is the method we use to obtain the unknown values.  

                                                 
1 According to the mathematical simulation, as long as the distance between the target 

and one of the foci is greater than 0.2m, the approximation will be good in case of 20m 
major-axis length.  
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Figure 6. Approximate the real positional error by TP . 

Model the displacement of a hyperbolic curve. In the first measurement round, 

(S1, S2) are selected as senders, and (A,T) as receivers. This gives the first hyper-

bolic curve H12. Since (S1, S2) and A have known locations and T’s location is 

unknown, their geometric relation, by substituting into Equation (2), is as follows: 

 

,  where  . 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

=

=

=

)T,(TT 

)A,(AA 
)S2,(S2  S2

 ) S1,(S1   S1

yx

yx

yx

yx

(6) rangeAS1,AS2,TS2,TS1,TA,S2,S1, q  ddddd =−+−=

 

Rewrite Equation (6) by substituting these coordinates: 

 

.)S2(T)S2(T)S1(T)S1(T d  d    )d (d  q 2
yy

2
xx

2
yy

2
xxTS2,TS1,AS1,AS2,range −+−−−+−=−=−−  (7) 

 

If qrange has no error, Equation (7) is a hyperbolic curve which passes through 

T(Tx,Ty). However, when qerror is added to qrange, its hyperbolic curve is displaced 

from T. We describe a method to approximate the amount of displacement. Since 

the only non-constant terms in Equation (7) are qrange and T(Tx,Ty), qrange can be 

written as a function of T(Tx,Ty), the gradient of qrange(Tx,Ty) is derived as follows: 
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. 
d

S2T
d

S1T
    ,

d
S2T  

d
S1T    )T,(Tq

 )d (d   )S2(T)S2(T)S1(T)S1(T  )T,(Tq

TS2,

yy

TS1,

yy

TS2,

xx

TS1,

xx
yxrange

AS1,AS2,
2

yy
2

xx
2

yy
2

xxyxrange

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

−−
−

−
=∇

−+−+−−−+−=
 

(8)

 

By the definition of gradient,  )T,(Tq yxrange∇ is the maximum changing rate of 

qrange(Tx,Ty). That is, if target T is shifted by a small ε movement, the maximum 

qrange incremental change is  )T,(Tq yxrange∇ε . Equivalently, to produce this qerror, 

)T,(Tq
q

yxrange

error

∇
is the minimum movement of the target T on the displaced hyperbola 

H12. The minimum movement is a good approximation of TN  when qerror is small. 

Denote qerror1 and qrange1(Tx,Ty) as qerror and qrange(Tx,Ty) measured in the 1st 

round, and qerror2 and qrange2(Tx,Ty) in the 2nd round. By applying the above ap-

proximation to these two measurement rounds, TN  and TM  can be obtained as 

follows: 

 

)T,(Tq
q  TM   ,

)T,(Tq
q

  TN
yxrange2

error2

yxrange1

1error

∇
=

∇
= . (9)

 

Model the Intersectional angle of two hyperbolic curves. The intersectional 

angle θ can be approximated by the tangent slopes at N (denotes mN and mM  re-

spectively) : 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=
MN

MN1-

mm1
m  mtan  θ . (10)

 

If the coordinates of N and M are known, the tangent slopes at N and M can be 

obtained. Since we can approximate TN  and TM  and the unit vector from T to N 
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)T,(Tq yxrange1(which runs parallel to∇ ), we can obtain the coordinate of N(Nx, Ny) by 

the following equation: 

 

)T,(Tq
)T,(Tq

)T,(Tq
q  )T,T(T  )N ,N(N

yxrange1

yxrange1

yxrange1

error1
yxyx ∇

∇

∇
+= . (11) 

 

Note that the last term is the product of XN  and the unit vector from T to N. In 

addition, we can obtain M in a similar way: 

 

)T,(Tq
)T,(Tq

)T,(Tq
q  )T,T(T  ) M,M(M

yxrange2

yxrange2

yxrange2

error2
yxyx ∇

∇

∇
+= . (12) 

 

Return to our original problem – solving the length of TP . First, extend TN  

and PY  to the intersection point Y to form a triangle as shown in Figure 6. After 

obtaining the intersectional angle θ, TN , and TM from the above approximation, 

TP  can be solved geometrically.  

 

⎪⎩

⎪
⎨
⎧

=

=

θ

θ
∆

tan TM  MY

 secTM  TY
:MTY For  (13) 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+=

+=

=

MY  PM  PY

TY  TN  NY

 sinPY  NY

 :NPY For

θ

∆
 

(14) 

 

According to Equation (14), we obtain: 

 

 MY  
sin

TY  TNMY  
sin
NY MY  PY  PM −

+
=−=−=

θθ
. (15) 

 



 

Substitute Equation (13) into Equation (15): 

 

θ
θ

θ
θ

tan TM  
sin

 secTM  TN  MY  
sin

TY  TN  PM −
+

=−
+

= . (16)

 

Apply Pythagorean Theory to TMP∆  and combine with Equation (16): 

 

.TM tan TM  
sin

 secTM  TN       

TM  PM  PT

2
2
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+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+
=

+=

θ
θ

θ
 

(17)

 

Finally, we substitute Equation (9) into Equation (17) to obtain the final estimation 

error: 

 

2

yx2range

error2

2

yxrange2

error2yxrange2

error2

yxrange1

error1

)T,(Tq
q

  tan
)T,(Tq

q
   

sin

sec
)T,(Tq

q
   

)T,(Tq
q

   PT ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∇
+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∇
−

∇
+

∇
= θ

θ

θ . 
(18)

 

If the intersectional angle θ is obtuse, there will be some minor differences in the 

deduction from Equations (13) ~ (17). However, despite these differences at the 

intermediate steps, the solution to PX  is still the same as in Equation (18). 

Experimental Validation of Estimation Error model 
We have designed and conducted two experiments to validate the correctness and 

accuracy of the estimation error model derived above. These two experiments differ 

on what parameters, in the estimation error model, are considered as known (ob-

servable) values or not. For example, at localization runtime, the values of qerror1 
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and qerror2 are not observable, since they would require the knowledge of the target’s 

ground-truth position.  

To approximate these qerror values, we introduce a calibration phase prior to 

runtime when samples at known locations are collected. Then the average |qerror| is 

calculated, and it can be used as the magnitude of qerror1 and qerror2 in our estimated 

error model. Note that the sign (+/-) for qerror1 and qerror2  is unknown. Therefore, for 

each position estimation, there are four possible +/- combinations of qerror1 and 

qerror2. Consider the example in Figure 7. For the target T, H14 and H12 are the hy-

perbolic curves created from the sender pairs (S1,S4) and (S1,S2) with no qerror. When 

different combinations of plus/minus qerror1 and qerror2 are substituted into our es-

timated error model, we obtain four estimated positions (T1 ~ T4) and estimation 

errors (|T – T1|, |T – T2|, |T – T3|, and |T – T4|). We then use the average of these four 

estimation errors as the target’s estimation error. 

In our experimental setup, six anchor nodes were placed uniformly on the ring 

with ten meters radius. Five targets were placed insides this circle. We measure 

these target nodes with 7 different SPCs. For each SPC, about 50 samples were 

collected. Since we had the ground-truth location of each target, the magnitude and 

sign of qerror and the estimation error were determined. Using these data, we vali-

dated the correctnesss of our error prediction model by comparing the real error and 

the estimation error.  
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Figure 7. Four estimation positional errors utilized |qerror| from the calibration phase 

All Parameters Known Case. This case considers all the parameters in the esti-

mation error model are known. Although this is unrealistic, we conducted this ex-

periment for the purpose of verifying the correctness of our estimation error model. 

Figure 8 plots the real ground-truth error vs. the estimation error (perror) calculated 

from our model in Equation (18). The red line plots a perfect diagonal line repre-

senting perfect error prediction, and the blue dots are our measurements. The results 

show that our estimation error model is accurate as it falls within 6 centimeters 

from the real error 90 % of the time.  
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Figure 8. Validation of the estimation error model in the all-parameters-known 
case. 

Runtime Case. At runtime, the system has no knowledge of the actual qerror, 

therefore, we use the average qerror obtained from a calibration phase, which is 26 

centimeters, in estimation error model. Figure 9 plots the cumulative density func-

tion (CDF) of the difference between the real error and predicted error from our 

estimation error model. The average difference is 35 centimeters, which is not as 

good as in the All-Parameters-Known case, but sufficient for our error estimation 

purpose.  

 



 

 

Figure 9. CDF of the estimation error for the runtime case. 
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Chapter 4 

Design of the Adaptive RIP Method 

The design of our adaptive RIP method is shown in Figure 10. It consists of fol-

lowing components: (1) adaptive SPC selection algorithm, (2) the estimation error 

model, and (3) the radio interferometric positioning engine. In the first step, the 

adaptive SPC selection algorithm is invoked to find the optimal anchor nodes as 

sender-pair-combination (SPC) that can locate mobile targets most accurately. To 

find the optimal SPC, the adaptive SPC selection algorithm currently performs an 

exhaustive search through all possible SPCs, and selects the SPC that gives the 

minimal estimation error. 
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Figure 10. System architecture of our adaptive RIP method. 

Specifically, for each unique SPC combination, the adaptive SPC selection 

algorithm invokes the Estimation Error Model in Equation (18), and calculates its 

corresponding estimation error. There are three notable details here. First, the ex-

haustive search strategy is still computationally manageable, because the estima-

tion error computation is relatively straightforward and the number of different 

combinations (proportional to the number of anchor nodes within the same radio 

range) is relatively small. Second, when tracking multiple targets, the Estimation 

Error Model computes an error for each target. If an application considers equal 

importance to all targets, an optimal SPC minimizes the aggregate error from all 

targets. Third, the Estimation Error Model requires the knowledge of the ap-

proximate locations of mobile targets, which be obtained by using the most recently 

estimated locations of the mobile targets. When the optimal SPC is selected, the 

system invokes the RIP engine to obtain the locations of targets.  

Some applications may consider some high priority targets, demanding stricter 



 

accuracy requirement, as well as some lower priority targets, having looser accu-

racy requirement. Our system can provide an optimization policy, which allows 

location-based applications to specify preference policies for different classes of 

target nodes. Based on this policy specification, our adaptive SPC selection algo-

rithm can intelligently choose SPC that favors accuracy of certain targets over the 

others.  
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Chapter 5 

Implementation of the Adaptive 
RIP System 

Our adaptive RIP system has been implemented on MICA2 Motes with 900 MHz 

radios made by Crossbow Inc. One MICA2 Mote connects to a laptop with MIB520 

programming board and relays phase measurement packets to a positioning engine 

developed in Java. The MICA2 Motes are running TinyOS. We modified the Radio 

Interferometric Positioning (RIP) engine [20] released by Vanderbilt University 

and ported it to 900MHZ MICA2 Motes. In addition, we extended the RIP engine to 

implement multi-target tracking. In each measurement round, the base station (PC) 

sends a command with selected SPC information to all sensor nodes. After time 

synchronization is performed, the selected sender nodes transmit sine wave in 

predefined carrier frequency. At our test site location in Taiwan, the frequency band 

of GSM-900[11] also happens to be around 900MHz, overlapping with a part of 

MICA2 radio channels. To avoid interference from the GSM-900 up/down link 

channels, we selected 18 carrier frequencies between 821.277MHZ to 

921.337MHZ whose ranges are away from GSM-900 channels. At the end of each 

measurement round, receiver nodes send back their phase measurement data to a 

base station. After the RIP engine collects phase measurement data from receivers, 

it estimates targets’ locations. 

 31





 

Chapter 6 

Experimental Results 

We conducted two experiments to evaluate the accuracy performance of our adap-

tive RIP system in a real sensor network environment. The first experiment tested 

the single-target tracking, whereas the second experiment tested multi-target 

tracking.  

Both experiments were performed on a square near the sport stadium of Nation 

Taiwan University, which is shown in Figure 11. The tracking area is a circle with 

10-meter radius. Six infrastructure anchor nodes were deployed uniformly on the 

ring, and their locations (A~F) are marked in Figure 12(a).  
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Figure 11. Experimental setup. 

   
(a) the static RIP method   (b) the adaptive RIP method 

Figure 12. Results of static RIP method versus our adaptive RIP method. The blue 
line is the target’s movement path. Blue dots indicate the target’s ground-truth po-
sitions at location sampling time. Red dots show the estimated positions from 
static/adaptive RIP method.  

Single-target tracking experiment. The first experiment tracked a single target, 

which was a person carrying a MICA2 Mote and walking under normal speed. His 



 

movement path is plotted as the blue line in Figure 12. This path was walked re-

peatedly 5 times for a total distance of 37 meters.  

To show that our adaptive RIP can improve the positional accuracy of the 

original static RIP method, we repeated this experiment twice, once using the static 

RIP method and once using our adaptive RIP method, and then compared their 

positional accuracy results. Figure 12(a)/(b) shows the result from the 

static/dynamic RIP methods. For the static RIP method, two pairs of senders are 

selected a-priori and fixed to {(B,C), (C,F)} regardless of the changing position of 

the target. Blue dots indicate the target’s ground-truth positions at the time of lo-

cation samples, and red dots show the estimated positions from each of the RIP 

methods. Figure 12 shows our adaptive RIP method tracks the moving target more 

accurately than in the static RIP method. Table 1 shows the average positional error 

and the amount of improvement of our adaptive RIP method over the static RIP 

method: 47% reduction in average error and 55% reduction at 90% percentile error. 

Table 1. Result comparison between the static and adaptive RIP methods in sin-
gle-target tracking. 

 Average error (meter) 90%-th percentile (meter) 

Static RIP 0.93 1.66 

Adaptive RIP 0.49 0.75 

Improvement 47% 55% 

 

Multi-target tracking experiment. The second experiment tracked six targets. 

The first five targets are stationary with their locations marked in Figure 13. The 6th 

target is mobile and follows the same movement path as in the first experiment.  

Similar to the first experiments, we want to show that our adaptive RIP method can 

improve the positional accuracy of the static RIP method. Therefore, we repeated 
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the experiment twice, once using the static RIP method and once using our adaptive 

RIP method, and then compared their positional accuracy results. Figure 14 shows 

the average positional error for each target using the static/adaptive RIP methods. 

Our adaptive RIP method reduces the average positional error in all the 6 targets. 

Table 2 summarizes the results, showing our adaptive RIP method with 60% re-

duction in average positional error and 61% reduction at the 90% percentile error. 

 

 
Figure 13. Stationary target distribution of multi-target tracking experiment. 

 



 

 

Figure 14. Average positional error of each target using the static/adaptive RIP 
methods. 

Table 2. Performance result comparison between the static and adaptive RIP 
method in multi-target tracking. 

 Average error (meter) 90%-th percentile (meter) 

Static RIP 0.75 1.41 

Adaptive RIP 0.30 0.54 

Improvement 60% 61% 

 

Table 3 provides insight into why our adaptive RIP method works better than 

the static RIP method. At a specific time point, estimation and real errors were re-

corded for 6 different SPCs as if each of them were used for positioning targets. 

They showed a wide range. The largest estimation/real error is 1.00/0.89 meter(s), 

which is 4.2/4.0 times of the smallest estimation/real error 0.24/0.22 meter. Our 

adaptive RIP method would select the optimal SPC#6, whereas the static RIP 

method could pick any SPC.  
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Table 3. Average estimation/error for locating each of five stationary targets using 
different SPCs 

SPC # 1 2 3 4 5 6 

First Sender Pair (D,E) (B,C) (B,C) (A,C) (B,E) (A,D) 

Second Sender Pair (D,F) (C,D) (C,F) (B,D) (C,F) (B,E) 

Average estimation error (meter) 1.00 0.84 0.60 0.37 0.33 0.24 

Average real error (meter) 0.89 0.89 0.74 0.63 0.37 0.22 
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Chapter 7 

Related Work 

The most relevant related work is the Radio Interferometric Positioning (RIP) 

method from Vanderbilt University [1][2][3][4]. It is a novel way of localizing 

targets by measuring relative phase offset with inexpensive hardware on sensor 

nodes. They proposed a tracking system called inTrack [3] based on the RIP method. 

Their result shows that, in 80 meters x 90 meters area,it can track a moving target 

with sub meter accuracy. Furthermore, they have developed mTrack [4] to track 

multiple targets simultaneously. However, as the number of moving targets in-

creases, mTrack may not be able to provide good positional accuracy to all moving 

targets with fixed sender pairs. This motivates our adaptive RIP method that dy-

namically selects sender pairs given the approximate positions of targets.  

There are many other sensor network positioning systems. In general, they can 

be classified into two broad categories of ranging-based and ranging-free methods. 

Ranging-based methods. They commonly require signal communications 

between an anchor observer and a locating target. The major differences among 

them are the calibration methods and the usage of signal sources, such as sonic, 

ultrasonic, infrared, camera, RF, etc. For example, Acoustic ENSBox [16] develops 

a distribution acoustic sensing platform, which an acoustic embedded networked 

sensing box can be rapidly deployed and perform self-calibration. It claims to 
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achieve 5 centimeters positional accuracy in a partially obstructed 80m×50m out-

door. Given that signal propagates with constant velocity, TOA (time of arrival) 

methods [18] estimate distance by measuring the signal propagation time. AOA 

(angle of arrival) [19] is a network-based solution that exploits the geometric 

property of the arriving signal. By measuring the angle of the signal’s arrival at 

multiple receivers, it is able to provide an accurate location estimation. TDOA (time 

difference of arrival) [17] is also network-based. It infers distance by measuring the 

time differences. Some hybrid approaches of TOA, AOA, and TDOA have been 

proposed [5].  

Another class of techniques measures the received signal strength indication 

(RSSI). These techniques exploit the decaying model of electronic-magnetic field 

to translate RSSI to the corresponding distance [6] [7] [9]. Also, the frequency 

bands used for transmission vary. For example, the well-known RADAR system [8] 

uses the radio frequency (RF). LADAR and SONAR use the visible light and the 

audible sound bands respectively. LADAR, SONAR, for instances, analyze the 

signal reflected from the object to estimate location. A recent innovation, Cricket 

[10], takes a hybrid approach, using both the RF and ultrasonic bands. But, the 

propagation characteristic is irregular under real environment [15]. Localization 

systems using RSSI information suffer from these problems and usually give me-

ter-level accuracy.  

Range-free methods. They are not based the range estimation between an-

chor nodes to localize targets. For example, APIT [14] estimates location of targets 

based on the connectivity information to anchor node with known location. The 

more anchor nodes are deployed, the narrow area that this technique could locate. 

In other words, the accuracy highly depends on the deployment density of anchor 

nodes. There is a class of techniques that detect the sequence of some artificially 

generated events from an event scheduler. For example, Spotlight [13] and Light-

house [12] correlate the event detection time of a sensor node with the known 
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spatiotemporal relationship. Then, the detection events can be mapped into a pos-

sible position. However, it is relatively difficult to generate and disseminate these 

events to a large-scale area, especially considering calibration efforts. 
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Chapter 8 

Conclusion and Future Work 

In this paper, we have designed, implemented, and evaluated an adaptive RIP 

method that can enhance the positional accuracy of the static RIP method [1]. The 

adaptive RIP algorithm is based on the Estimation Error Model that can accurately 

predict the positional error of RIP method, given a specific SPC selection and the 

approximate location of a target. We have analytically derived the Estimation Error 

Model, which was then verified with its correctness through real experimental re-

sults. Furthermore, we have built upon this Estimation Error Model to devise an 

adaptive SPC (sender-pair combination) selection algorithm that dynamically finds 

the most optimal SPC according to the changing locations of targets relative to 

anchor nodes. Our experimental results show that the adaptive RIP method out-

performs the static RIP method in both single-target and multi-target tracking, im-

proving the average positional error by 47%~60% and at the 90% percentile error 

by 55%~61%. 

For our future work, we would like to pursue several directions. One direction 

is to better estimate qerror, because using an average value as qerror. in the Estimation 

Error Model is not so accurate. One possible improvement is to find a way to model 

the distribution of qerror at a finer-grained level, as well as further analyzing factors 

causing qerror, such as multi-path fading (environmental factor), receiving power of 
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interference signal (deployment factors), etc. Considering these factors can help 

improving the prediction accuracy of our Estimation Error Model.  
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